Considering the Future of Academic Conferences: An Experiment and Analysis of AI-Generated Conference Proposal Submissions

Franklin S. Allaire*, Ph.D.
Associate Professor, University of Houston-Downtown
<u>allairef@uhd.edu</u>
https://orcid.org/0000-0003-1053-0462

Katherine Perrotta, Ph.D.
Associate Professor, Mercer University
perrotta_ka@mercer.edu
https://orcid.org/0000-0001-8230-3061

*Corresponding author

As artificial intelligence (AI) becomes increasingly integrated into academic spaces, questions about authorship, authenticity, and peer review are becoming more urgent. This exploratory study investigates the implications of AI-generated conference proposals by submitting a single, AI-authored proposal to 20 local, state, national, and international education conferences. Eleven accepted the proposal and nine rejected it, with only two conferences providing substantive reviewer feedback. The mixed results highlight inconsistencies in peer review practices, underscore AI's potential to produce conference-quality proposals, and provoke crucial ethical, procedural, and philosophical questions about peer review rigor and scholarly gatekeeping in an age of increasingly intelligent technologies.

Keywords: Artificial intelligence; Generative AI; Peer review; Academic conferences; Research ethics; Scholarly publishing

While artificial intelligence (AI) has been a concept and a tool for some time, it has quickly become ubiquitous in society, particularly in education. Al's prevalence is evidenced by the rapid (7.9%) year-over-year rise from 2021 to 2022 in new computer science bachelor's degrees in North America, as well as an 11.1% increase from 2021 to 2022 and a tenfold increase from 2007 in computer science AP (Advanced Placement) exams administered (Maslej et al., April 2024). Within the academic sphere, even before the introduction of ChatGPT, a study by Chen et al. (2020) found upward trends in the number of AI-in-education-related articles, citations, grant funding, and awards. More recently, Crompton and Burke (2023) found that between 2021 and 2022, AI-related journal publications rose nearly two to three times the number of previous years. Anecdotally, the authors' email inboxes have been subjected to a daily deluge of conferences, blogs, webinars, and workshops focused on AI.

Benefits and Challenges of AI in Academic Work

AI tools have evolved from the much-maligned "Clippy" to sophisticated tools like Google Gemini, ChatGPT, and Meta AI. The sophistication and high degree of interactivity enable these AI tools to complete complex tasks for educational stakeholders at the elementary, secondary, and post-secondary levels. For example, educators use AI to assist with lesson planning, finding, choosing, and adapting lesson materials, curricular mapping, supporting students with disabilities and multilingual learners, analyzing student data, and creating assessments and activities for students (Cu & Fujimoto, 2023). States and districts use AI to develop and score students on standardized tests and analyze data for previously unrecognized patterns (Peters, 2024). Students are using AI to assist with completing assignments, activities, and assessments. The benefits and challenges of AI in education are prompting various responses by educational stakeholders at the local, state, and national levels.

For example, there is genuine concern about the impact students' use of AI will have on academic honesty and the ability to process and internalize knowledge. Weissman (2023) has called ChatGPT a plague, likening it to COVID-19, "that threatens our minds more than our bodies." Others, such as Parrilla (May 2024) and Cardona et al. (2023), assert that AI can help research scientists navigate the cumbersome and time-consuming task of writing grant proposals and improve education by supporting teaching and enhancing instruction.

Ethical Questions and Institutional Responses

The use of AI by students and faculty in higher education raises significant ethical and pedagogical questions. However, this exploration cannot be one-sided. Weismann and others criticize students for using ChatGPT to augment their work. However, a recent survey of 1600 academic researchers published in *Nature* (Van Noorden & Perkel, 2023) reveals that approximately 25% of respondents use AI to help them write manuscripts, and 15% use the technology to write grants. In his column in *Nature*, Parrilla (2023) poses the question, "Some people might see the use of ChatGPT in writing grant proposals as cheating, but it highlights a much bigger problem: What is the point of asking scientists to write documents that can be easily created with AI? What value are we adding?" These thought-provoking questions challenge the status quo and encourage a deeper examination of the ethical implications of AI use in academia.

Purpose of the Study

There is growing interest and research in how and when to use AI tools for academic research and writing (Hosseini et al., 2023; Lee, 2023). This article reports on a quasi-experimental study in which ChatGPT was used to write a proposal that was then submitted to various regional, state, national, and international conferences. Rates of acceptance and rejection were tracked along with reviewer comments. The results of this study show the potential of using

AI for academic writing. More broadly, and like Parrilla (2023), the results also posit whether AI

lays bare flaws in the peer-review systems that academic faculty rely on for purportedly unbiased

and objective peer-reviewed feedback on conference proposals and journal submissions. Such

questions are essential for faculty and researchers in the academy concerning the ethics of using

AI to conduct original research studies for funding, publication, and presentation. They also have

the potential to impact how undergraduate and graduate students are taught ethics and research

methods when pursuing their degrees and how institutions handle cases of academic (dis)honesty

among faculty and students.

As members of academia, we often collaborate on original research, conference

presentations, and publications. More specifically, as faculty in colleges of education and teacher

educators, we routinely discuss academic honesty and integrity with our undergraduate and

graduate teacher candidates. The development, expansion, and availability of AI for everyday

use have added urgency to these discussions as educators seek ways to adapt to a rapidly shifting

technological landscape in education.

Literature Review

The proliferation of AI in education, while emerging as a novel tool in teaching and

learning, has existed since the 1940s. Professor John McCarthy coined the term "artificial

intelligence" at a Dartmouth conference in 1958 (Myers, 2011). As a result, this literature review

briefly outlines the origins of AI in education, as well as its current uses and concerns, to situate

how this study contributes to this growing field concerning the practical uses of AI and the ethics

of using this tool, particularly for academic endeavors such as conference presentations and

publications.

Background: AI in Education

Journal of Research in Education, Vol. 33, Issue 2, 2025

125

Mathematician Dr. Alan Turing's landmark work on computer programming, cryptology, and "machine intelligence" during the 1940s and 1950s is the foundation for modern computing and AI (Muggleton, 2014; Pelaez et al., 2022). His work, along with other computer scientists such as Georg Polya, Alain Newell, and Herbert Simon, led to the rise of intelligent computer-assisted instruction (ICAI) where researchers in computer science and psychology examined how computers can be programmed with symbols and numbers for the machine to identify a problem, devise a plan to solve a problem, hence being useful for tutoring and measuring learning (Holmes & Tuomi, 2022, p. 543)—for example, behaviorist BF Skinner. In Skinner's linear programs, larger tasks were broken down into smaller ones in a sequential order for students to accomplish and input their answers instead of selecting a multiple-choice answer, which was among the first instructional technologies used for teaching (ibid). However, Skinner's programs were limited because they could not provide students with individualized feedback and sometimes ignored a student's response to questions (Nwana, 1990).

ICAI technologies improved throughout the 1960s-1990s when researchers developed "generative" or "adaptive" problems instead of pre-loading systems with material that could be "tailored" to students' needs (Nwana, 1990, p. 255). Stanford University's PLATO program was the first to be used in education for science and math instruction in 1965 (Ray, 2023). Specifically, the Intelligent Tutoring Systems Computer Assisted Instruction (ITSCAI) programs that were created for companies like RAND for a multitude of subject areas, particularly reading and writing, where students input information based on tasks the system created, receive feedback on their work and interact with the computer (Ray, 2023; Williamson & Eynon, 2020; Zhai et al., 2021). Although these AI systems were limited regarding the extent to which the computer could communicate through giving more complex answers to questions or giving more

sophisticated feedback explaining why a particular result was an answer to a problem, these technologies were the forerunners for more sophisticated generative AI that could be used to increase efficiency, convenience, and innovation in educational settings (Selwyn et al., 2021).

Since the 2010s, contemporary AI has evolved from merely imitating human intelligence to becoming "a data-processing system that can learn and make predictions from classifying and correlating huge quantities of 'big data'" (Williamson & Eynon, 2020, p. 223). The rapid adaptation of AI "is currently viewed by many as a driver that is integral to the fourth industrial revolution, and it may trigger the fourth revolution in education" (Zhai et al., 2021, p. 1). These views are predicated upon the widespread use of AI for data mining, personalized learning platforms such as iReady, applications used on learning management systems such as Moodle, curriculum development of college courses, and the accessibility of the technology to the general public (Chen et al., 2020; Ray, 2023). In November 2022, the release of ChatGPT popularized the use of conversational AI, particularly among students and teachers, as writing aids for emails, reviews, cover letters, and lesson plans (Beck & Levine, 2023). Consequently, while the hype over AI is exciting, the technology has a long history that is the product of "a complex social, cultural, and material artifact that is understood and constructed by different stakeholders in varied ways, and these differences have significant social and educational implications that need to be explored" (Eyon & Young, 2021, p. 166).

Benefits of AI in Education

There are numerous benefits to using AI in education, particularly in higher education.

Holmes and Tuomi (2022) contend that AI can support Bloom's theories on "mastery learning,"

where the technology can be adapted to differentiate instruction by determining students' prior knowledge and provide "different amounts of instruction to get to the same level of mastery in a given topic" (p. 544). As a result, many AI software and services that are provided by large tech companies such as Curriculum Associates, IXL, Google, Apple, and Microsoft offer many student-centered tools such as text-to-speech programs, image and speech captioning, grammar and writing assistance, chatbots that can answer questions and provide customer service, simulations, and diagnostic testing that support mastery through personalized learning with feedback and real-time help (Holmes & Tuomi, 2022). The use of AI can be consequential for student learning and achievement because the technology can support students with disabilities and exceptionalities, provide individualized tutoring, and promote engagement in problem-solving skills.

Teachers and faculty can also benefit from AI. A systematic literature review of AI scholarship from 1993-2020 by Zhang and Aslan (2021) found that AI can assist with tasks relating to both in-person and online environments that include creating flipped classroom activities, crafting lesson plans, making assessments, giving feedback, scoring tests, identifying gaps and strengths in learning, and predicting which students may be at risk or who are advanced, thus providing interventions to meet and support learning needs (p. 6). These benefits are echoed in interviews conducted by Chubb et al. (2022) on AI's collective and individual use in academia. AI tools are also used to detect plagiarism with programs such as Turnitin and to operate learning management systems (LMS) such as Canvas and Desire2Learn (Holmes & Tuomi, 2022). Additionally, AI tools like ChatGPT can make peer review of scholarship "more timely and effective" because of its ability to generate paragraphs that provide feedback to authors and peer reviewers for conferences and journals (Francke & Bennett, 2019; Kousha &

Thelwall, 2024; Leung et al., 2023, p. 1). These types of AI technologies have the capacity and potential to optimize pedagogy by using data that can customize curricula, instructional strategies, and assessments for diverse learners.

Concerns with AI in Education and Academia

Despite these advantages of AI, significant concerns exist with its use in education. Zhai et al. (2021) found in their systematic literature review of AI papers from 2010-2020 that these technologies, while more capable of providing general support to students, lack individualized feedback and personalized learning on specific activities. Moreover, their review found that teachers swing between becoming too reliant on AI to perform tasks, which can lead to inflated expectations of what it can do, or rejecting using AI altogether, which can result in not being aware of effective research-based practices for teaching. As a result, AI usage could negatively impact both students' and teachers' self-efficacy in learning how to implement new technologies in teaching and learning and engaging in the human experience of the inquiry process and knowledge production (Cardona et al., 2023; Chubb et al., 2022; Weissman, 2023).

Recently, there has been increased focus on using and abusing AI, mainly when using the technology to write full papers and complete assignments that lack original thought, ideas, opinions, findings, or problem-solving skills. Hosseini et al. (2023) note that AI systems "do not 'know' the meaning or truth-value of the text they receive, process, and generate. Their function is simply to generate understandable (i.e., grammatically correct) and appropriate (i.e., highly probable) text outputs in response to text inputs" (pp. 1-2). As a result, Kousha and Thelwall (2024) contend that since AI cannot be held accountable for what it generates because it is not human, and hence lacks the ability to determine meaning, it cannot be listed as a co-author on

scholarship. Therefore, the extent to which AI can be cited in research or as a co-writer is problematic.

Additionally, AI can produce inaccurate or biased information and citations as a writing assistant, peer reviewer, or plagiarism detector. Such results can lead to false findings, accusations of plagiarism, diminished quality control of submitted papers, and damage to professional reputations (Sadasivan et al., 2023). Consequently, since human authors can only be held accountable for what is written and reviewed, scholars and students must declare that the use of AI as part of a research methodology with writing study findings when submitting work for school grades, publication, and conference presentation (Lee, 2023; Leung et al., 2023; Tang et al., 2024).

Given the vagueness of determining what AI produces or humans produce, there are ethical and legal concerns with using AI when conducting research, reviewing, and producing scholarship. Frye (2022) outlines these murky issues in a study in which ChatGPT was asked questions about copyright, plagiarism, and whether students and scholars should use AI to produce academic writing. In this study, ChatGPT's responses noted the difficulty in determining when the use of AI in academic writing infringes upon copyright and that there are potential credibility issues and sanctions that authors can face when using AI to produce scholarship. Although this article was tongue-in-cheek, Frye aimed to engage scholars, faculty, and students in thinking about why original work is valued in academia and to what extent, legally or ethically, AI can and should be used in these circumstances.

Ultimately, integrity is at the heart of many concerns over AI in education. Elali and Rachid (2023) argue that using AI to conduct or "fabricate" studies poses severe consequences to the scientific community because it "relies on the integrity of these publications to make

informed decisions about changes in sociology, economics, politics, and medicine, amongst others" (p. 1). Consequently, if the findings from AI-generated studies are faulty, then there may be serious ramifications when they are used to make policies and decisions concerning people's health, education, well-being, and environments. Furthermore, the integrity issue extends to using data mined and stored for AI-assisted or generated scholarship, particularly sensitive information such as student records and assessment scores. Tahiru (2021) notes that "data ownership, technology, security, and trust" are significant challenges that present ethical issues when using AI for research, mainly when researchers apply for institutional review board approval for studies using human participants (p. 14).

Peer Review

The peer review process is an integral aspect of academic life, namely to objectively and fairly scrutinize, improve, reject, or accept credible and reliable research findings for the public via publication, conference presentation, and other forms of dissemination. The peer review process has been a staple of higher education and research for over two centuries; however, by the mid-1960s, peer review became the "norm…to ensure quality and excellence in papers published in scientific, educational and professional journals" (Ali et al., 2016., p. 194. Also see Kronick, 1990; Rennie, 2003; Henly & Dougherty, 2009). De Vries et al. (2011) assert that while the peer review process is ubiquitous and necessary for scientific research, there is a need to examine the process itself due to factors such as reviewer bias, experience conducting a peer review, and agreement on whether an article, proposal, or another sort of manuscript should be accepted.

Typically, the peer review process involves an editor or conference chair to collect submissions and to assign reviewers with relevant experience in a particular research field to

evaluate the manuscript submission for clarity, originality, validity, or reliability of results, and contributions to a scholarly field. The reviewers and authors remain anonymous throughout the submission, evaluation, and decision process, where a manuscript can be accepted without revision, accepted with revisions, or rejected. Depending on the journal or conference proceedings, manuscripts can be single or double blind reviewed by anonymous scholars who are experts in particular fields.

There are several characteristics of effective peer review. Among these are timely turnaround of feedback on manuscripts from reviewers (Fisher & Powers, 2004), thoughtful and constructive feedback on manuscripts from reviewers (Gardner & Willey, 2013; Kearney & Freda, 2005), and well-informed decisions made by editors or conference chairs to accept or reject a manuscript (Chong & Lin, 2024). Likewise, the flaws of the peer review process are unearthed when authors do not receive timely feedback on submissions, reviewers possess a particular bias towards or against a research topic or do not provide clear feedback for revisions, lack of peer review, and how editors handle situations in which two reviewers do not agree on a decision (De Vries et al, 2011; Onitilo et al., 2013). Consequently, the peer review process could be "obstructionist" if accepted research upholds prejudicial beliefs and discriminatory hierarchies and perpetuates the status quo of what kind of studies are considered legitimate research. This obstruction is especially an issue if studies are being produced with "deceitful findings" as a means to survive the dreaded "publish or perish" attitudes in academia (Morley & Grammar, 2021, p. 1). Furthermore, relying on volunteers to serve as editors, conference chairs, and peer reviewers is another drawback to the peer review process, as academic professionals and researchers must balance peer review obligations with teaching, scholarship, and other service

obligations. While ubiquitous, the peer review process can be cumbersome, slow, and exclusionary.

Given these persistent issues with peer review, it is no surprise that some scholars and institutions have turned to artificial intelligence as a potential remedy. As a result, using AI not only to write papers and proposals but also to assist with peer review may seem like an efficient and logical solution to address some of the challenges of the current peer review system.

Although AI systems need to be "taught" how to respond to prompts and questions, this technology is rapidly becoming sophisticated enough that programs like OpenAI's ChatGPT "can generate coherent and informative text, ranging from a few sentences or paragraphs to an entire essay in response to specific prompts from the user, such as the topic, length, or writing style" (Hossenei et al., 2024, p. 716).

Still, AI chatbots need to be "trained" to answer prompts and questions with relevant, objective, and unbiased information, especially if this technology is used to assist with research and conducting peer review of empirical studies. Therefore, if researchers, journal editors, or conference chairs involved with reviewing and disseminating scholarly work choose to use an AI assistant, particularly in ensuring the quality, reliability, and integrity of research—then human oversight is still essential (Dobele, 2015; Chong & Lin, 2024; Onitilo et al., 2013). AI-assisted or AI-generated content must still be carefully reviewed for errors, irrelevancy, bias, and any unethical usage of technology to mislead or deceive.

What Is Needed

AI has impacted education in subtle ways for almost 80 years. Generative and adaptive programs for skill and content mastery and assisting with pedagogical tasks, such as creating assessments and lesson plans, have been used for decades. However, the recent surge in interest

in AI in education stems from the rapid expansion of tools like ChatGPT and other easily accessible AI programs that are free or affordably priced. These tools are now widely accessible to students, teachers, administrators, researchers, and other K-12 and higher education stakeholders, including those involved in producing academic research and writing. According to Tahiru's (2021) systematic literature review, there are considerable studies on the benefits and challenges of using AI in education. However, there is a need for further research on how educational institutions, journals, and conference organizations are establishing and implementing policies of ethical use. Tahiru notes that one key in addressing AI-related concerns is developing a clear accountability structure that identifies "who is responsible for the information used by the system" (p. 16). Regarding peer review, Leung et al. (2023) caution that peer reviewers and editors must carefully read the terms of use when using AI tools. These platforms can potentially compromise the confidentiality of reviewers and authors and leak findings and information before final editorial or conference decisions are made.

Institutions, publications, and professional organizations are grappling with issues concerning the use of AI tools, particularly as the technological norms of today evolve and advance tomorrow. Consequently, this study aims to explore the extent to which an AI-generated conference proposal is accepted through the peer review process and highlight the need to analyze best practices and clarify expectations for peer review.

Methodology

In this study, the authors examined the extent to which a meme-inspired and AI-generated conference proposal was accepted or rejected at state/regional, national, and international conferences. These findings are critical to analyzing the effectiveness of peer review, the rigor with which professional organizations accept proposals, and the ethical

ramifications of AI use on faculty research and teaching. As such, the research question that frames this study is: *Can an AI-generated conference proposal be accepted for presentation?*

Research Design

This study is best understood as an exploratory case study examining how an AIgenerated proposal is treated within the existing academic conference peer review ecosystem.

Rather than establishing causality or statistical generalizability, the intent was to investigate
whether such a proposal could be accepted for presentation and to observe any patterns or
inconsistencies in how it was reviewed. The proposal was submitted to twenty conferences—
categorized post hoc as regional/state, national, and international—based on each organization's
scope and self-described reach. While this categorization provides a rough framework for
organizing outcomes, the labels are acknowledged as non-standardized and based on publicly
available descriptors rather than consistent institutional metrics. The study does not aim to
compare acceptance rates across different tiers of conferences, nor does it conclude typical
acceptance rates in the field. Instead, the findings offer insight into the variability of proposal
evaluation and reviewer feedback, raising questions about transparency, rigor, and preparedness
in peer review systems when confronted with AI-generated submissions.

Proposal Creation

In early 2023, a meme on social media platforms such as Facebook and X (then Twitter) invited individuals to find their "vague academic paper title" based on their first and last initials and birth month. In jest, the authors took the quiz and discussed their results. They then went further, combined their initials and birth months, and generated the title "Identifying Politics of Normative Spaces as Sites of Resistance in New Media." Institutional Review Boards approved the study, and an AI-generated proposal was created using ChatGPT.

Figure 1

Screenshot of the social media meme "What is the vague title of your paper?" The authors used this meme to create the topic for the AI-generated conference proposal.

Using a free version of ChatGPT, the authors began developing the proposal by asking the AI general questions to develop background knowledge about the topic. General questions included:

- What are normative spaces?
- How can the politics of normative spaces be identified?
- Who occupies normative spaces?
- Who creates resistance within normative spaces?
- What are the different types of new media?
- What mechanisms are used for resistance in new media?

Once the authors understood the topic more clearly, they asked ChatGPT more specific questions. Examples of these questions are:

- What are the power dynamics of normative spaces?
- What impact do normative spaces have on education?
- How can parents/teachers be sensitive to the politics of normative spaces in new media?
- How do the politics of normative spaces as sites of resistance in new media impact children?
- What are the benefits and challenges of identifying the politics of normative spaces as sites of resistance in new media?
- How can educators support students interested in normative spaces in new media?

The next step was to prompt AI to write parts of the conference proposal and generate a list of studies on normative spaces as sites of resistance in relation to new media and education.

The authors then prompted ChatGPT to produce other parts of the conference proposal, including a literature review, the methodology used to explore the topic, a rationale, and a statement explaining "what attendees can expect to get out of this session."

Using the information provided by ChatGPT, the authors began to refine and provide specific prompts related to the proposal with appropriate citations. The language produced by ChatGPT in response to the authors' prompt was used to construct the final conference proposal. Specific prompts provided to ChatGPT included asking AI to write multiple paragraphs that:

- Linked the topic with diversity,
- Explained ideological influences,
- Explained why someone should care about the topic,

- Summarized the challenges and opportunities,
- Examined student engagement and strategies of resistance,
- Summarized the power dynamics and
- Described a methodology that could be used to analyze the topic

The output provided by ChatGPT was transferred into multiple documents. The authors then stitched the documents to create a cohesive conference proposal. Figure 2 is a scannable QR code to view the final proposal. The proposal's content was nearly identical across all conferences, with strategic length and formatting changes (e.g., cover sheets or specific headers) made based on each conference's criteria.

Figure 2

Scannable QR code for the final AI-generated proposal entitled "Identifying the Politics of Normative Spaces as Sites of Empowerment in New Media."

Conference Selection

Conferences were selected based on two primary criteria: (1) relevance of themes or strands that aligned with the AI-generated proposal topic (e.g., educational research, technology in education, media studies, or diversity/equity strands); and (2) the authors' lack of regular

participation in the selected conferences to avoid potential bias or reputational harm. Each conference had a public call for proposals with online submission portals accessible during the study period. Conferences were categorized by scope—regional/state (n=7), national (n=8), and international (n=5)—based on how the organizations described their reach and intended audience. One national conference where the authors typically present was included as an exception, but the AI-generated proposal was submitted to an entirely different strand than the authors' actual work. The proposal was submitted following standard procedures in all cases, and no additional identifying information was altered.

While this approach ensured relevance and minimized risk to the authors' professional identities, it also represents a form of purposeful convenience sampling and limits the generalizability of the findings. As such, this study does not claim to represent all conferences, and future research might explore more significant or more systematically selected samples to better understand peer review patterns and proposal acceptance across academic contexts.

Analysis

As a quasi-experimental study that sought to answer the question, "Can an AI-generated conference proposal be accepted for presentation?" The analysis of this research was straightforward. The authors tracked submissions to state, national, and international conferences and noted the proposal's acceptance or rejection. When this study was conceived, the authors hoped to conduct a narrative analysis of reviewers' comments to find themes across the various conferences. A thorough narrative analysis was impossible since only two conferences provided detailed reviewer comments.

Ethical Considerations

This study involved intentional methodological deception, as the AI-generated proposal submitted to 20 academic conferences was not intended for presentation. The purpose of this approach was to explore how peer review systems respond to AI-generated scholarship, a growing concern in academic publishing, as well as teaching. Before beginning the study, both authors received formal approval from their respective Institutional Review Boards (IRBs), which reviewed the proposal per established guidelines for research involving minimal risk and deception. While IRB approval provided procedural clearance, we recognize that ethical accountability also extends to the broader academic community regarding our intentions for submitting conference proposals. We acknowledge that submitting the same AI-generated proposal to multiple conferences without intent to present may have imposed an unintended burden on peer reviewers, mainly when many conferences are short on volunteers. For this reason, we chose conferences in which we were not regular participants, and we withdrew the proposal from all programs immediately upon acceptance. We do not advocate for replicating this approach broadly and believe that any future studies using similar methods should be handled carefully and guided by ethical oversight and institutional review. Instead, we hope this work serves as a prompt for institutions and conferences to be aware that AI is being used for academic purposes, and that there is a need to develop clear guidance on the ethical boundaries of AI-generated submissions and the responsibilities researchers hold when studying the systems in which they participate.

Results

The research question guiding this exploratory study was: Can an AI-generated conference proposal be accepted for presentation? Based on this small-scale inquiry, the answer is yes. The AI-generated proposal, created using ChatGPT and submitted to 20 conferences, was

accepted by 11 and rejected by nine. While the sample was not intended to be statistically representative, the outcome demonstrates that an AI-authored proposal can meet the minimum bar for acceptance across a range of academic conferences.

The proposal was submitted to conferences that were informally categorized based on their stated scope: regional/state (n = 7), national (n = 8), and international (n = 5). While these categories provide a general context, they are not used here for inferential comparison. Instead, they help describe the types of venues to which the proposal was submitted. The range of responses, from complete acceptance to rejection without comment, highlights inconsistencies in how proposals are reviewed and whether feedback was provided. Only two of the twenty conferences offered substantive reviewer comments, limiting the extent to which qualitative peer review analysis could be conducted. This low rate of detailed feedback raises questions about transparency and rigor in conference review processes, particularly as AI-generated content becomes more prevalent.

Submission of the AI-generated proposal

The AI-generated conference proposal was submitted to 20 education conferences during the 2023-2024 academic year. These included seven regional/state, eight national, and five international conferences. The purpose was not to meet a predetermined goal or benchmark but to explore whether an AI-generated proposal could be accepted. The fact that the proposal was accepted for presentation at any conference was enough to answer the research question in the affirmative. In cases where proposals were accepted, the authors immediately notified conference organizers and withdrew the submission to avoid occupying program space or violating ethical norms.

Acceptance/Rejection Rates

The authors were surprised by the acceptance rate for the proposal at the different conference levels. Table 1 displays the rates of acceptance/rejection and the rate at which the proposal received reviewer feedback. Initially, the rates of acceptance/rejection for different types of conferences differed from what could be expected, given the comparative size, breadth, prestige, and cost of state/regional versus international conferences. The state/regional conferences had the lowest acceptance rate (57%), whereas international conferences had the highest rate (100%), with a national conference acceptance rate of 86%.

 Table 1

 AI-Generated Conference Proposal Rates of Acceptance and Feedback

Conferences	Accepted		Reviewer Feedback	
	Yes	No	Yes	No
State/Regional	4	3	0	7
National	7	1	2	5
International	5	0	0	5

Upon reflection, there are several potential reasons for the higher acceptance rates for national/international conferences. Firstly, state and regional conferences may have fewer presentation slots than national and international conferences, creating more competition among potential presenters vying for limited presentation opportunities. As a result, regional/state conference organizers may be more selective in accepting proposals, favoring those more aligned with the conference theme. Additionally, regional/state conferences may have a different audience from larger, more research-driven national/international conferences. Thus, a presentation on "identifying normative spaces as sites of resistance in new media" may not appeal to an audience of practitioners, educators, and policymakers primarily interested in practical applications rather than theoretical discussions.

Conversely, National and international conferences, generally speaking, have both a broader audience and a range of topics. Thus, they tend to feature a more diverse pool of presenters and attendees, including scholars, researchers, practitioners, and policymakers from various backgrounds and disciplines, than state or regional conferences. Thus, "identifying normative spaces as sites of resistance in new media," which intersects with multiple fields, including media studies, communication, sociology, and political science, may appeal more to the national and international conference attendees.

Reviewer Comments

While each conference provided platitudinous emails regardless of acceptance/rejection, the authors were disappointed with the lack of substantive feedback on the quality of the proposal. In most cases, requests for feedback on the proposal were ignored. Of the 20 conferences that received the AI-generated proposal, only two national conferences provided meaningful reviewer comments and feedback.

The feedback from reviewers at two national conferences on the proposal titled "Identifying the Politics of Normative Spaces as Sites of Resistance in New Media" reflected a blend of positive recognition and constructive criticism. Reviewers appreciated the proposal's relevance and clarity, particularly its timely focus on normative spaces in media and its connection to broader societal issues such as representation, equity, and social justice. Two individuals reviewed the proposal for one of the conferences and received an average rating of 24.5 out of 30 points. One reviewer praised the strength of the theoretical framework and its alignment with the conference theme, suggesting the proposal could contribute meaningfully to ongoing discourse. Similarly, another reviewer from a different national conference commended

the proposal for clearly explaining the importance of normative spaces and effectively utilizing research to support its claims, highlighting its accessibility and relevance.

However, alongside this positive feedback, reviewers also provided critical insights to refine the proposal. A reviewer expressed uncertainty about the concepts' originality, suggesting they might be familiar ideas repackaged under new labels. Another reviewer recommended that the proposal sharpen its focus and better align with the conference theme while incorporating more practical implications or actionable strategies. A reviewer for another conference critiqued the literature review, noting a lack of new information and suggesting a more precise definition of "normative spaces" was needed. This reviewer also called for a more detailed methodological approach, including specifics about the literature reviewed, such as time spans and types of articles. They noted that normative spaces are continuously evolving, and they wondered if a "thematic analysis would yield something different looking at articles from the last five years vs. earlier." These critiques indicate that while the proposal was valued for its potential contribution, it would benefit from greater originality, a more focused thesis, and enhanced methodological rigor.

Like peer feedback on journal publications, conference proposal feedback can be valuable for presenters to improve their work. However, various factors may influence whether feedback is provided and the level of detail it contains. Reviewing and providing high-quality feedback on conference proposals can be time-consuming and labor-intensive, especially for larger conferences with a high volume of submissions. Conference reviewers may not always have the expertise or background knowledge to provide meaningful feedback on every proposal. As such, conference organizers may lack the time or personnel to provide detailed feedback to every potential presenter. Additionally, some conferences may have policies based on the

conference's objectives, available resources, confidentiality/anonymity, or previous experiences with providing feedback that do not require or prioritize providing feedback to presenters.

Discussion

While this exploratory study was not comprehensive, the results answer our research questions. The AI-generated proposal achieved varying acceptance rates across different levels of conferences, reflecting its ability to meet the standards of conference-quality submissions. The formation and execution of this study led to several revelations by the researchers. The first was ChatGPT's speed, efficiency, and "ability" to process requests and produce a proposal that was considered and accepted by numerous conferences. Although they crafted the final version of the conference proposal, ChatGPT accomplished the bulk of the writing in a fraction of the time it would have taken the authors. This experience aligns with the murky gray area of copyright, plagiarism, and ownership outlined by Frye (2022), Hosseini et al. (2023), and Lee (2023). ChatGPT's access to the vastness of internet-based information could alleviate some of the more mundane aspects of academic research and writing. However, it could also lead to a temptation to fabricate information (Elali & Rachid, 2023) and exacerbate some negative aspects of academic writing and publishing (Chubb et al., 2022), specifically the aphorism to "publish or perish."

The second notable finding was the lack of positive or critical feedback from the researchers after the review process. As noted previously, this may reflect the policies of the conferences. However, the absence of detailed feedback highlights ongoing concerns raised in the literature about peer review quality, inconsistency (Dobele, 2015), bias (Onitilo et al., 2013), and a lack of transparency (De Ries et al., 2011; Parrilla, 2023; Sadasivan et al., 2023). As AI tools evolve from spelling/grammar assistants to voice-to-text software to generative AI and

become the norm in academic writing, conferences must ensure that reviewers do not discriminate in favor of or against AI-generated proposals (Tahiru, 2021). Generally, conferences provide standardized guidelines and criteria for assessing qualities such as the relevance, originality, significance, and clarity of conference proposals. As AI technology becomes ubiquitous, conferences may need to consider how reviewer training and evaluation procedures can adapt to ensure that AI-generated proposals are assessed based on the same criteria applied to non-AI proposals (Leung et al., 2023; Tang et al., 2024; Van Noorden & Perkel, 2023). Future research is needed to explore how best to ensure fairness in the peer review of AI-assisted submissions.

Finally, as scholars navigating emerging technologies such as generative AI, we recognize the ethical complexities of using deception in research, even when that research is IRB-approved. Although we intended to investigate this issue based on academic curiosity about the extent to which an AI-generated proposal could be accepted via peer review to a research conference, this study raises important questions about how researchers can responsibly examine systems like peer review without inadvertently compromising their integrity and the integrity of those systems. This study is not meant as a model for replication, but rather to create a space for more robust dialogue on AI ethics, academic integrity, transparency in peer-reviewed scholarly work, and academic accountability.

Implications

The widespread adoption of AI in academic writing and research is reshaping the landscape of academic publishing, introducing new opportunities and challenges for scholars, publishers, and readers alike. The implications of using AI in academic writing and publishing are complex and multifaceted. The benefits of AI in academic writing, research, and

presentations include enhanced insights, efficiency, productivity, quality, and inclusivity.

Challenges related to AI in academia include ethical considerations, bias, and the role of human creativity and judgment. Further, the widespread use of AI in academic circles could disrupt traditional publishing practices, potentially influencing and impacting peer review processes and editorial decisions.

Benefits. AI-generated content has the potential to streamline the publication process by expediting manuscript preparation, enhancing writing quality, and facilitating peer review. AI-powered tools may accelerate the research workflow by automating repetitive tasks such as literature review, data analysis, and drafting manuscripts. Researchers can potentially leverage AI algorithms to sift through vast amounts of literature, extract relevant information, and synthesize findings, freeing up valuable time for more in-depth analysis and interpretation. Additionally, AI-driven writing assistants may enhance writing efficiency by offering suggestions for improving clarity, grammar, and style and streamlining the manuscript drafting process.

New and veteran academics can use AI-powered writing assistants (e.g., Grammarly) to detect and correct grammatical errors, improve sentence structure, and suggest revisions to enhance readability. AI tools can potentially analyze writing patterns and provide feedback to ensure consistency in writing style and formatting across multiple documents. By leveraging AI-driven writing tools, researchers may elevate the quality of their manuscripts, making them more polished and professional. Consistency in writing style and formatting enhances academic texts' coherence and readability, facilitating readers' comprehension and knowledge dissemination. The use of AI in academic writing and presentations has the potential to enhance accessibility and inclusivity in scholarly communication. AI-generated content can also be transformed into

alternative formats such as audio transcripts, braille documents, or multimedia presentations, catering to the diverse needs of learners with disabilities or those who prefer alternative modes of consumption. Moreover, AI-driven translation tools could enable researchers to disseminate their work to a global audience by overcoming language barriers.

Additionally, AI-driven recommendation systems may help researchers discover relevant literature, identify potential collaborators, and navigate the scholarly publishing ecosystem more effectively. Researchers could apply AI learning algorithms to analyze literature across disciplines to uncover hidden patterns, correlations, and relationships that may not be readily apparent to human researchers. This interdisciplinary approach to knowledge discovery enables scholars to transcend disciplinary boundaries and approach research questions and scholarship from new perspectives and innovative solutions to complex problems. Moreover, AI-driven data analysis tools empower researchers to identify emerging research trends and interdisciplinary connections, facilitating collaborative research endeavors and interdisciplinary dialogue. *Challenges.* Integrating AI in academic writing also poses several challenges that researchers must thoughtfully navigate. Some of the challenges include developing an overreliance on automation, algorithmic bias, and increasing technological disparities between research with and without access to AI. Researchers may also become overly reliant on AI-powered tools for proposal creation, potentially compromising the depth of critical thinking and creativity required in academic research. Relying too heavily on AI-generated content may limit researchers' ability to engage deeply with their research questions, methodologies, and theoretical frameworks, leading to formulaic or uninspired proposals. As scholars rely more on AI for research and writing, they become more susceptible to algorithmic bias. AI systems may exhibit biases inherent in the data used to train them, favoring proposals and articles that align with those

biases, which are potentially disadvantageous to researchers working in underrepresented areas. Further, adopting AI technologies in conference proposal creation and reviewing may exacerbate skill disparities among researchers, particularly those with limited access to AI tools or technical expertise. Researchers proficient in using AI-powered writing assistants may have a competitive advantage over their peers, potentially widening existing disparities in academic opportunities and outcomes. These challenges also reinforce the importance of peer review processes that remain transparent and accountable, particularly as AI becomes more embedded in manuscript production and evaluation (Chong & Lin, 2024; Gardner & Willey, 2014).

One of the most critical challenges related to integrating AI in academic writing and research is the ethical considerations regarding authorship, plagiarism, transparency, accountability, and fairness. While not inherently dishonest, AI assistance in academic writing and conference proposals raises critical ethical questions and concerns depending on the context and the norms of an academic institution, conference, publisher, and community. The acceptability of submitting an AI-generated conference proposal may vary depending on the norms and expectations of the academic community. Some fields or conferences may be more receptive to using AI tools in research and writing, while others may have stricter guidelines or reservations about their use. It is important to consider community norms and expectations when deciding whether to submit an AI-generated proposal and to adhere to ethical guidelines established by the relevant scholarly community.

Domo Arigato Conference Roboto

Researchers and research organizations will play a critical role in ensuring transparency and integrity when using AI tools to generate conference-related content. However, the level of transparency and acknowledgment of AI tools used in developing and submitting conference

proposals is a gray area. Similarly, conferences will need to develop submission guidelines as well as tools and procedures for reviewers to use and follow when evaluating proposals that were created or are suspected of being created with the assistance of AI technology. Submission guidelines could include a statement with proposals that acknowledge the use of AI technology.

There are numerous critical questions at the heart of the responsible use of AI in conference proposals, and high-quality research on the use of AI for educational and academic purposes is critical to understanding its benefits and challenges as well as ensuring accountability (Leung et al., 2023; Tahiru, 2021). Do academic authors need to disclose the use and contribution of algorithmic search engines (e.g., Google Scholar) or spelling/grammar programs (e.g., Grammarly) that use AI? Will acknowledgment be limited to generative AI? If so, will institutions or conferences need to establish a percentage AI contribution threshold (ex., 11.38%) to determine whether a proposal/paper is eligible for consideration? How would such a threshold be determined and enforced? Will using AI tools become a standard part of the conference submission process? Can or should journals disclose the use of AI for peer review? Should peer reviewers be trained on how to use AI to ensure the reliability of feedback and the confidentiality of the submitted work?

We found many peer-reviewed articles about the peer review process in nursing, medical, and fishery journals; very few of the studies we reviewed for this paper were found in publications targeting higher education, academia, and scholarly publishing in education. We hope that these inquiries will lead to future studies that can contribute to this growing body of research on AI, peer review, and academic integrity within the landscape of scholarly publishing (Chong & Lin, 2024; Dobele, 2015; Gardner & Willey, 2014).

Conclusion

The results of this exploratory study suggest that AI, specifically ChatGPT, can meet the threshold for acceptance at a range of academic conferences. This study found that the AI-generated proposal was accepted at regional, national, and international levels, with notable variation across conferences. These outcomes raise questions about the consistency of peer review and suggest that AI tools may influence how scholarly content is created and evaluated. However, the limited reviewer feedback underscores the challenge of drawing clear insights about how peer review systems respond to AI-generated content. This study reinforces the importance of developing clear guidelines and ethical frameworks regarding the use of generative AI in scholarly work, particularly as these technologies become more accessible and influential.

Integrating AI in academic writing presents several potential benefits, including increased efficiency, enhanced writing support, and greater inclusivity of research outputs. AI tools may help streamline parts of the publication process, improve clarity and structure, and facilitate the dissemination of research to a global audience through translation and alternative formats. However, this study also identifies several key concerns, such as the risk of overreliance on generative AI, algorithmic biases, the extent to which AI can or should be detected via the peer review process, and ethical concerns regarding authorship, disclosure, and transparency. As AI technology becomes more prevalent in academic spaces, there is a growing need for institutions, journals, and conferences to engage in thoughtful dialogue and reflection on how best to balance innovation with academic integrity and equitable access.

References

- Ali, P. A., & Watson, R. (2016). Peer review and the publication process. *Nursing Open 3*(4), 193–202. https://onlinelibrary.wiley.com/doi/pdf/10.1002/nop2.51
- Beck, S. W., & Levine, S. R. (2023). Backtalk: ChatGPT: A powerful technology tool for writing instruction. *Phi Delta Kappan*, 105(1), 66-67. https://doi.org/10.1177/0031721723119748
- Cardona, M. A., Rodríguez, R. J., & Ishmael, K. (2023). Artificial intelligence and the future of teaching and learning: Insights and recommendations, Office of Educational
 Technology. Retrieved from https://coilink.org/20.500.12592/rh21zz on 14 May 2025.
 COI: 20.500.12592/rh21zz.
- Chen, X., Xie, H., & Hwang, G. (2020). A multi-perspective study on Artificial Intelligence in Education: grants, conferences, journals, software tools, institutions, and researchers.

 Computers and Education: Artificial Intelligence, 1.

 https://doi.org/10.1016/j.caeai.2020.100005
- Chong, S. W., & Lin, T. (2024). Feedback practices in journal peer-review: A systematic literature review. *Assessment & Evaluation in Higher Education*, 49(1), 1–12. https://doi.org/10.1080/02602938.2022.2164757
- Chubb, J., Cowling, P., & Reed, D. (2022). Speeding up to keep up: Exploring the use of AI in the research process. *AI & society*, *37*(4), 1439–1457. https://doi.org/10.1007/s00146-021-01259-0
- Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: the state of the field. *International Journal of Educational Technology in Higher Education*, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8

- Cu, B. H., & Fujimoto, T. (2023). AI Education for Middle/ High School Level: A Proposal of a System that Supports Teachers to Design Their AI Lessons. In H. Selvaraj & T. Fujimoto (Eds.), Applied Systemic Studies. ICSEng 2022. Lecture Notes in Networks and Systems (Vol. 611). Springer. https://doi.org/https://doi.org/10.1007/978-3-031-27470-1
- De Vries, D. R., Marschall, E. A., & Stein, R. A. (2009). Exploring the peer review process: what is it, does it work, and can it be improved? *Fisheries 34*(6), 270-279. https://doi.org/10.1577/1548-8446-34.6.270
- Dobele, A. R. (2015). Insights into the peer-review process: A case study analysis. *Studies in Higher Education*, 40(8), 1364–1377. https://doi.org/10.1080/03075079.2014.881343
- Elali, F. R., & Rachid, L. N. (2023). AI-generated research paper fabrication and plagiarism in the scientific community. *Patterns*, *4*(3). https://doi.org/10.1016/j.patter.2023.100706
- Fisher, R. S., & Powers, L. E. (2004). Peer-reviewed publication: A view from inside. *Epilepsia* (Series 4) 45(8). https://doi.org/10.1111/j.0013-9580.2004.14204.x
- Francke, E., & Bennett, A. (2019). The potential influence of artificial intelligence on plagiarism: A higher education perspective. European Conference on the Impact of Artificial Intelligence and Robotics (ECIAIR 2019).
- Frye, B. L. (2022). Should using an AI text generator to produce academic writing be plagiarism? *Fordham Intell. Prop. Media & Ent. LJ*, *33*, 946. https://heinonline.org/HOL/P?h=hein.journals/frdipm33&i=967.
- Henly, S.J. & Dougherty, M.C. (2009). Quality of manuscript reviews in nursing research.

 Nursing Outlook 57, 18–26. https://doi.org/10.1016/j.outlook.2008.05.006
- Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. *European Journal of Education*, 57(4), 542-570. https://doi.org/10.1111/ejed.12533

- Hosseini, M., Rasmussen, L. M., & Resnik, D. B. (2023). Using AI to write scholarly publications. Accountability in Research, 31(7) (pp. 715–723) https://doi.org/10.1080/08989621.2023.2168535.
- Kousha, K., & Thelwall, M. (2024). Artificial intelligence to support publishing and peer review:

 A summary and review. *Learned Publishing*, *37*(1), 4–12.

 https://doi.org/10.1002/leap.1570
- Kronick D.A. (1990). Peer-review in 18th-century scientific journalism. Journal of the American Medical Association 263, 1321–1322. doi:10.1001/jama.1990.03440100021002
- Lee, J. Y. (2023). Can an artificial intelligence chatbot be the author of a scholarly article?

 Journal of educational evaluation for health professions, 20.

 https://doi.org/10.3352/jeehp.2023.20.6
- Leung, T. I., de Azevedo Cardoso, T., Mavragani, A., & Eysenbach, G. (2023). Best practices for using AI tools as an author, peer reviewer, or editor. In (Vol. 25, pp. e51584): JMIR Publications, Toronto, Canada. https://www.jmir.org/2023/1/e51584
- Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., Etchemendy, J.,
 Ligett, K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y., Wald, R., & Clark, J.
 (April 2024). *The AI Index 2024 Annual Report*. I. f. H.-C. A. AI Index Steering
 Committee. Retrieved from https://hai.stanford.edu/ai-index/2024-ai-index-report
- Morley, C. P., & Grammer, S. (2021). Now more than ever: reflections on the state and importance of peer review. *PRiMER: Peer-review reports in medical education research*, 5, 36. DOI: 10.22454/PRiMER.2021.216183
- Muggleton, S. (2014). Alan Turing and the development of Artificial Intelligence. *AI* communications, 27(1), 3–10. https://doi.org/10.3233/AIC-130579

- Myers, A. (2011). Stanford's John McCarthy, seminal figure of artificial intelligence, dies at 84.

 Stanford University. Haettu, 1, 2018. Retrieved from

 https://news.stanford.edu/stories/2011/10/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dies-84
- Nwana, H. S. (1990). Intelligent tutoring systems: an overview. *Artificial Intelligence Review*, 4(4), 251–277. https://doi.org/10.1007/BF00168958
- Onitilo, A. A., Engel, J. M., Salzman-Scott, S. A., Stankowski, R. V., & Doi, S. A. R. (2013).
 Reliability of reviewer ratings in the manuscript peer review process: An opportunity for improvement. *Accountability in Research*, 20(4), 270–284.
 https://doi.org/10.1080/08989621.2013.804345
- Parrilla, J. M. (2023). ChatGPT use shows that the grant-application system is broken. *Nature*, 623(7986), 443-443. Retrieved from https://www.nature.com/articles/d41586-023-03238-5
- Parrilla, J. M. (May 2024). AI levels the playing field for researchers applying for grants.

 Retrieved from

 https://www.universityworldnews.com/post.php?story=20240508134752792
- Pelaez, A., Jacobson, A., Trias, K., & Winston, E. (2022). The Turing Teacher: Identifying core attributes for AI learning in K-12. *Frontiers in Artificial Intelligence*, *5*, 1031450. https://doi.org/10.3389/frai.2022.1031450
- Peters, K. (2024, APRIL 9, 2024). Texas will use computers to grade written answers on this year's STAAR tests. *The Texas Tribune*. Retrieved from https://www.texastribune.org/2024/04/09/staar-artificial-intelligence-computer-grading-texas/

- Ray, K. (2023). AI's Big Deal: AI in the Classroom Continues to Evolve. Retrieved from https://www.techlearning.com/news/ais-big-deal-ai-in-the-classroom-continues-to-evolve
- Rennie D. (2003). Editorial peer review: its development and rationale, In Godlee, F., & Jefferson, T. (Eds). *Peer Review in Health Sciences, 2nd edition*. BMJ Books, 1–13.
- Sadasivan, V. S., Kumar, A., Balasubramanian, S., Wang, W., & Feizi, S. (2023). Can AI-generated text be reliably detected? *arXiv preprint arXiv:2303.11156*. https://doi.org/10.48550/arXiv.2303.11156
- Selwyn, N., Hillman, T., Bergviken Rensfeldt, A., & Perrotta, C. (2021). Digital technologies and the automation of education—key questions and concerns. *Postdigital Science and Education*, 1–10. https://doi.org/10.1007/s42438-021-00263-3
- Tahiru, F. (2021). AI in education: A systematic literature review. *Journal of Cases on Information Technology (JCIT)*, 23(1), 1-20. Retrieved from https://www.igi-global.com/article/ai-in-education/266434
- Tang, A., Li, K. K., Kwok, K. O., Cao, L., Luong, S., & Tam, W. (2024). The importance of transparency: Declaring the use of generative artificial intelligence (AI) in academic writing. *Journal of nursing scholarship*, 56(2), 314-318.
 https://doi.org/10.1111/jnu.12938
- Van Noorden, R., & Perkel, J. M. (2023). AI and science: what 1,600 researchers think. *Nature*, 621(7980), 672-675. https://www.nature.com/articles/d41586-023-02980-0
- Weissman, J. (2023). ChatGPT is a plague upon education. *Inside Higher Ed*, 8. Retrieved from https://www.insidehighered.com/opinion/views/2023/02/08/chatgpt-plague-upon-education-opinion

- Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. *Learning, Media and Technology, 45*(3),223-235 https://doi.org/10.1080/17439884.2020.179899
- Zhai, X., Chu, X., Chai, C., Jong, M., Istenic, A., Spector, M., Liu, J., Yuan, J., & Li, Y. (2021).

 A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. *Complexity*,

 2021(1), 8812542. https://doi.org/10.1155/2021/8812542
- Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025.
 https://doi.org/10.1016/j.caeai.2021.100025